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Numerical solution of differential equations on the surface of the sphere re-
quires grid generation. Examples include numerical simulations of mantle convec-
tion, weather, and climate. Because of their ability to offer local resolution at modest
computational cost, unstructured grids are attractive in this context. However, un-
structured grids suffer from drawbacks such as high computational overhead and
inefficient generation schemes. Here we present a scheme for generating unstruc-
tured grids on the surface of the sphere that overcomes these limitations. We also
show how the scheme can be easily used to allow efficient domain decomposition for
parallel computations. The surface of the sphere is covered with a spherical spiral,
which is used to provide an underlying structure for the grid. The spiral is populated
by nodes, which are then connected using an advancing front technique to gener-
ate near-equilateral spherical triangular elements. Methods for producing local grid
refinement by adjusting the pitch of the spherical spiral are discussed, as is the ex-
tension of the method to the case of coupled pressure—velocity solvers. The same
general idea of a spherical spiral also serves as the starting point for an algorithm to
subdivide the grid into subdomains for parallel computation. The resulting unstruc-
tured grids are generally of very high quality: in uniform grids, 99.4% of the elements
have areas between 90 and 107% of the mean element area, and 99.8% of the edges
have lengths between 84 and 132% of the mean edge length. The quality of the grids
increases with mesh density. Partitioning of the nodes and elements produces well-
balanced and compact subdomains, with a maximum load imbalance that is small
and rises gradually with number of subdomains. The proposed scheme produces
grids that combine the benefits of an unstructured mesh with the structure conferred
by the underlying spherical spiral. For example, this underlying structure greatly
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facilitates tasks such as element searching. This scheme is an attractive alternative
for generating unstructured triangular grids on the spherg1999 Academic Press

Key Words:grid generation; finite element mesh; parallel computation; sphere;
numerical weather algorithm; domain decomposition.

INTRODUCTION

Numerical simulations of weather and climate require grid generation on the surface
the sphere. Although the computational effort spent in grid generation is relatively sm
the grid influences every aspect of the subsequent computation, and the grid gener
step is therefore very important. An extensive analysis of the relative merits and deme
of different grid generation schemes on the sphere can be found in Willliamson [1]. Hi
we briefly review the two main types of grids currently used for solving partial differenti
equations (PDESs) on a sphere, namely longitude—latitude grids and quasi-uniform grid

Longitude—latitude grids are structured grids, with grid lines aligning with the spheric
coordinates. These grids have the advantages of being fairly simple to generate and of
amenable to use with spectral or finite difference schemes for solution of the governr
PDEs. They suffer from severe crowding of grid points near the poles. This implies exc
computational expense without any gain of accuracy and in certain schemes can lead to
step limitations and/or the need for filtering schemes to eliminate high frequency waves i
poles. Grid crowding can be avoided by using reduced grids at extreme latitudes, but
results in hanging nodes and pseudo-reflections at regions of abrupt grid density che
Kelly and Williams [2] found that forecast accuracy improves markedly by use of smoott
varying grids.

Quasi-uniform grids are unstructured grids obtained by subdividing uniform tesselati
of the sphere. Because a sphere can be divided into at most 20 identical elements, h
resolution grids based on such subdivisions must be quasi-uniform. The most popular
to generate quasi-uniform grids is to project the vertices of an icosahedron inscribing
sphere and to then bisect the edges of the resulting triangles. Quasi-uniform grids
convenient to use with finite element based solution schemes for the governing PDES (
Cullen and Hall [3]), but they can also be used for finite difference discretizations (e.
Williamson [4]). Quasi-uniform grids avoid poleward crowding and related problems, a
are attractive due to renewed interest in finite element spatial discretization schemes tha
handle such grids efficiently (e.g., Heikes and Randall [5, 6]). However, quasi-uniform gr
have disadvantages, including complex data structures, inability to generate the reqt
resolution, and inflexibility in generating variable resolution grids.

The purpose of this manuscript is to describe a new scheme for generating varia
resolution, unstructured, triangular grids on the sphere that overcome many of the ab
mentioned problems. The basic concept involves using a spherical spiral to produce ¢
that have a simple underlying structure, even though the grids are “unstructured” in
finite-element sense. This simple underlying structure can be exploited in several way
produce good quality grids that are well suited to both serial and parallel computations

METHODS

Our scheme for generation of unstructured grids is based on the use of a spherical s|
i.e. a spiral which lies on the surface of a sphere [7]. Spherical spirals can be character
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by the orientation of their axis and by their pitch, defined as the number of revolutions tt
make on the sphera, Spherical spirals aligned with the north—south axis are described

¢=10), —n/2<¢p=<n/2, 0<06 <2nm, Q)

wheref is any continuous, positive, monotonic function, @ahd¢ are the longitude and
latitude coordinates, respectively.

Node Placement

The first step in the process is to generate a nodal distribution along a spherical sp
The nodes are placed on the spiral starting at one end and moving toward the other
The distance between consecutive hodgis,chosen so that triangular elements formed by
joining nodes from consecutive revolutions of the spiral will be approximately equilater:
Denoting the latitudinal distance between two subsequent turns of the spiréd hy) and
assuming a small triangular element, we therefore require

e, $) = 2h(6, ¢)/v/3. )

The quantitye is computed by noting that the distants between two points on the unit
sphere separated o}y andd¢ is given by

_ dg)*
ds= CO§¢+(d@) do (3)

so that the distanca, between two point®;(6;) and P»(6,) lying on the spiral is

02
Sip = /\/co§ f(0) + f2do. 4)
6

Thus, given a functiorf (6) with an associated inter-turn spacing distributigs, ¢), and
a point located at6,, f(61)), the angular locatio®, of the subsequent point is given
implicitly by

02
h(6y, f(6y)) = ?/\/co§f(9) Ti2de (5)
01

which can be evaluated by numerical methods.

Uniform Spiral

A special case arises if the functidnis linear, in which case the spiral is said to be uni-
form and has the governing equation

¢=30/n—m). (6)

Such a spiral has uniform pitch, and on the unit sphege ¢) is therefore constant and
equal torr/n. Equation (4) takes the simplified form

S12 =V 1+ 4n?[E(¢2, m) — E(¢1, m)], (7)
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whereE is the incomplete elliptic integral of the second kind with paramgter 4n?/
(4n? 4 1) and¢; is ¢ evaluated a#;, i =1, 2. Forn>> 1, which is usually the situation in
practice and fop; away from the poles, Eq. (7) simplifies to

S0 = 2n[sin(¢,) — Sin(¢1)] (8)

which can be combined with Eq. (2) to give a closed-form expression for the loagtion
for a given#,. Also, forn>> 1, the total number of nodal points on the spifdl,is given
by the approximate relation

N 9)

23,
= —n-.
T
Using this relation, the pitch of a uniform spiral can be chaspriori so as to give a desired
number of nodal points.

Nonuniform Spiral

A high-quality variable resolution mesh can be generated from a nonuniform spiral
follows. A function f (0) is specified that creates a tighter spiral near one of the pole
which implies high node density near that pole. For example, by increasing the pitch al
the spiral axis, a higher nodal density is achieved toward the second spiral pole. Typic:
a constant, high pitch value is used within a high density “window” centred on the secc
spiral pole, and the pitch value is gradually reduced outside this window to a lower val
This results in a smoothly graded grid with local refinement around the second spiral p
In order to generate a higher nodal density in an arbitrary latitude—longitude window,
spiral axis is rotated such that one of the spiral poles resides at the centre of the windc

Triangular Element Generation

The next step of the procedure is to create a triangular unstructured finite element n
using the nodal points generated above. Rather than using Delaunay triangulation for
purpose, we employ a moving front technique that exploits the underlying linear struct
of the nodal points lying on the spherical spiral. Triangulation is started from one pole
the spiral by joining nodes 1 and 2 with a geodesic to form the edge 1-2. This “active” e(
is then used to seed the following algorithm (Fig. 1):

Given an active edge with endpoirfes and P,:

e Form a test spherical triangle from poiri®g, P,, andP; + 1.

e Form a second test spherical triangle from poitsP,, andP, + 1.

e Choose the test triangle that is closest to equilateral, and reject the other one. If
first test triangle is chosen, the new active edge becdpgeB; + 1; otherwise, the active
edge becomeB,—P, + 1.

Repeat until the second pole of the spiral is reached.

Vector-Scalar Placement on the Grid

An important special situation arises when the PDEs to be solved on the sphere are
rived from the incompressible Navier-Stokes equations, e.g. the shallow water equati
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FIG. 1. Partially constructed triangular mesh showing the node placement procedure and the triangula
procedure. Triangulation procedure (upper portion of diagram); suppose thahr@debeen placed and node
n+ 1 is about to be placed. The placement of nodel is governed by the distanegwhich is computed from
Egs. (2)—(5) for the triangle defined by node® + 1, andp. Triangulation procedure (centre of diagram): in this
schematic, nodes 1 to 10 lie on the spiral, with node 1 coinciding with the spiral pole. As shown, the active edq
2-8, and the two test triangles are 283 and 289. Triangle 289 will be accepted because it is closest to equile
and the active edge will advance to 2-9.

For numerical reasons, the pressure unknowns and the velocity component unknowns
usually be defined on different grids in such situations (e.g., Arakawa and Lamb [8]). In 1
finite element context, this requirement is known formally as the Brezzi—-Bubuska (BB) cc
dition [9]. Choosing the velocity basis functions to be polynomials of one order higher th
the pressure, basis functions typically satisfies the BB condition, e.g. a linear approxima
space for pressure, coupled with a quadratic approximation space for velocity. Howe
the calculation of inner products of the fields and their derivatives becomes cumbersc
when higher order basis functions are employed on spherical grids.

An attractive way of avoiding this problem is to use the so-called pséid®; ele-
ment, first introduced by Bercovier and Pironneau [9]. Such elements, which satisfy
BB condition, approximate both the velocity and pressure fields using linear basis fu
tions. However, the velocity basis functions are defined on elements formed by join
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the midpoints of the sides of the pressure elements with geodesics. Thus, every pre:
element contains four velocity elements. When the psdegd?;, element is used, the
pressure grid is a subset of the velocity grid; thus additional positional coordinates n
not be stored or calculated at every time step. Another important advantage of such
ments, in the case of semi-Lagrangian treatment of the advection terms, is that exper
departure point calculations need not be performed for pressure and velocity grid po
separately.

If pseudoP,—P; elements are used for spatial discretization, the fill pattern of the matric
arising from a spatial discretization of a governing equation on the surface of the spt
will depend on the node numbering system used. One approach is to number pres
nodes “naturally,” i.e. in the order in which they appear on the spiral. Velocity nodes can
numbered in a similar fashion, with the added complexity that the node number foPgact
element midside node is “inserted” into the numbering list following the first corner no
attached to that midside node. This scheme results in banded matrices with a bandv
approximately equal to the number of nodes required to complete one wrap of the spir

Parallel Computation Issues

For many large-scale numerical problems, it is desirable to carry out the computati
in parallel. A number of partitioning schemes for unstructured grids have been propose
the literature [10, 11], but many of them suffer from drawbacks of one type or another. |
example, most popular partitioning schemes for unstructured grids are based on recu
bisection algorithms. These are restricted to partitioning the domain such that the numb
subdomains is a power of two, and thus they are not sufficiently flexible in some situatic
Furthermore, some partitioning algorithms (e.g., spectral bisection) are relatively expens
Finally, existing algorithms balance loads well between processors, but do not necess
minimize interprocessor communication. Here we show how our grid generation sche
is consistent with an efficient partitioning of the computational space that overcomes th
problems. This partitioning scheme is based on a data decomposition paradigm. For sim
ity, we assume that the amount of data per node and per element is approximately uni
across the computational domain, so that data partitioning is equivalent to partitioning
total number of nodes and elements in the physical domain. A suitable partitioning sche
should have the following attributes:

1. It should be simple and economical to implement.

2. It should be flexible in generating the required number of partitions, including ca:
where the number of partitions is large.

3. Itshould produce abalanced load across all the processors. Withiooiti knowledge
of the computational load per node, we simply assume that balancing the number of |
points across all processors will produce a balanced load. Failure to produce balat
loads will give nonoptimal speedup on parallel architectures, particularly on machines v
relatively weak processors.

4. It should minimize the inter-subdomain communications. In many applications, tl
implies that the subdomains should be compact, and we have taken this as a require
for our partitioning scheme.

A suitable algorithm that uses the underlying spiral structure of our nonuniform grids
partition the spherical surface grid inbsubdomains is as follows:
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e Generate a spherical spiral (of suitable pitch) that cont&insdes distributed ap-
proximately uniformly on the surface of the sphere. These nodes will lie approximately
the centre of each subdomain and will be referred to as “processor nodes.”

e For each processor node, identify and store the closest node from the numerical ¢
These closest grid points will be referred to as “seed nodes” and will be used to start
following form of the greedy algorithm for accumulation of neighbouring grid points.

e For each seed node, use node-neighbour information from the connectivity ta
to attach all available immediate neighbour nodes to the corresponding subdomain. -
creates a “shell” around each seed node.

e Repeatthis process using each newly acquired node within the shell to form a sec
shell surrounding the seed node.

e Continue forming shells in this manner unil/ P nodes are attached to the sub-
domain, or until no more available immediate neighbour nodes remain.

e Carry out a sweep over the entire domain to assign any remaining nodes to the adja
subdomain with the smallest number of nodes. This is necessary for two reasons. First
distribution of the seed nodes on the surface of the sphere can never be perfectly unif
resulting in unacquired nodes around some subdomains. Second, some subdomains
their limit of N/P nodes before acquiring all their neighbours. The second reason appe
to be the main source of unevenness in the partitions generated using this scheme.

o Partition elements into subdomains according to which subdomain owns the majo
of their nodes. Elements with three nodes belong to three different subdomains are allc
to the subdomain that has the lowest number of elements.

For cases in which the computational domain contains both a velocity and a pres:s
grid, the partitioning is done on the pressure grid, and the velocity grid is then partition
For isoP,—P; elements, this is a well-defined process since the velocity grids are contair
inside the pressure grids.

RESULTS

Grids Based on Uniform Spirals

A uniform spiral with pitchn =10 is shown in Fig. 2, and the resulting pressure an
velocity grids are shown in Fig. 3. It can be seen from Fig. 3 that the vast majority of t
spherical triangular elements are well-formed (i.e., approximately equilateral). Near
second pole of the spiral grid, where meshing comes to completion, some of the elem
are slightly deformed because the last node on the spiral does not usually coincide witt
second spiral pole (see centre of Figs. 3b and 3d). However, these elements are not gr
deformed, and our experience is that in practice such meshes work well without the nee
mesh smoothing near the second pole. Further, the deformation that occurs near the se
pole diminishes as the pitch of the spiral (and thus the node density) increases.

Quantitative measures of unstructured grid quality include the distribution of elemen
areas, edge lengths, and aspect ratios. Here we define the aspect ratio to be the len
the longest side divided by the altitude from this longest side. The “optimal” aspect ratic
approximately 1.1547 for small spherical triangles, which is a lower bound for the act
aspect ratios. Figure 4 shows the distribution of the above three quantities for a grid base
a uniform spiral with pitcln = 32. Overall, the distributions show that the resulting mesh i
of good quality: 99.4% of the elements had areas between 90 and 107% of the mean ele
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z

.

FIG. 2. A uniform spherical spiral with pitch = 10. The solid line shows the spiral axis, which was inclined
in the z-y plane by 10 to the polar axis. Superimposed on the spiral are nodes (black circles) generated by
procedure described in the text. This spiral was used to generate the meshes shown in Fig. 3.

area; 99.8% of the edges had lengths between 84 and 132% of the mean edge lengtt
99.9% of the elements had aspect ratios less than 2.1. There were 12 elements (out of ¢
that had aspect ratios greater than 2.1. These elements were derived from subdivisic
three pressure elements near the poles, and had a maximum aspect ratio of 2.54. Ov
these mesh statistics are very favourable and confirm the excellent quality of the grid.

Grids Based on Nonuniform Spirals

We present one nonuniform grid to illustrate the potential of the method. Figure 5 shc
a grid with a refined zone within a circular window of arc®s@ntred at (53N, 103W).
Inside this window, the underlying spherical spiral was specified to be uniform with pit
n=22. Outside this window, the effective local pitch was gradually reduced by a fix
increment of approximately-0.0015 each time a grid point was added, resulting in a fing
pitch at the second spiral pole of=10. This gradual reduction in pitch produces a mesil
with smoothly varying element sizes, so that pseudo-reflections are avoided and solt
accuracy is maintained [3].

Grid Partitioning for Parallel Computations

We illustrate the performance of the grid partitioning procedure by showing statistl
for several partitioned grids. Figure 6 shows a polar view of a grid with inter-subdoms
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FIG. 3. Unstructured pressure and velocity grids based on a uniform spherical spiral witgitth and
the pseuddP,—P; triangular element: panel (a) equatorial orthographic view of pressure grid; panel (b) pol
orthographic view of pressure grid; panel (c) equatorial orthographic view of corresponding velocity gr
panel (d) polar orthographic view of corresponding velocity grid.
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FIG. 4. Distribution of elemental areas, edge lengths, and elemental aspect ratios for the velocity m
generated with an underlying uniform spiral of piteh= 32. This mesh contains 8728 velocity elements (6546
edges). The bin size was 1% for the left panels and 0.02 for the right panel.
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FIG. 5. Spiral geodesic grid with a local high resolution window over North America for regional foreca
purposes. This grid contains 207 pressure nodes, 410 pressure elements, 822 velocity nodes, and 1640 v
elements. See text for detailed discussion of how grid was generated.

boundaries outlined. It can be seen that the proposed algorithm generates reasonably
pact subdomains, resulting in small inter-subdomain boundary lengths. Figure 7 quant
the distribution of nodes and elements within each subdomain of a uniform mesh divit
into 20 subdomains. Although the load is not precisely balanced between subdomain
this partitioning algorithm, it can be seen that a near-equal subdivision is obtained.

In order to further quantify how well the partitioning scheme distributes nodes and €
ments into subdomains, we define a load imbalance pararhgtdoy

Lu=100(Nmax— Ni)/N; (10)

whereNioa is the total number of nodes or elememMs = Nia)/ P is the ideal distribution of
nodes or elements per subdomain, &gy is the maximum number of nodes or elements
actually allotted to any subdomain. Figure 8 shows how this parameter varies with
number of subdomains. The load imbalance increases with the number of subdomain
expected. However, even for up to 38 processors the maximum imbalance is only 6%, wi
is acceptably small.

DISCUSSION AND CONCLUSIONS

Generation of appropriate grids on spheres is a nontrivial problem. Such grids are reqt
in meteorological dynamics simulations, as well as in other nonmeteorological computati
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FIG. 6. Partitioning of a spherical spiral grid of pitch 32 into 8 subdomains. Heavy lines indicate subdome
boundaries.
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FIG. 8. The load imbalance parametér,, vs the number of subdomains. See text for definition of load
imbalance parameter. The original mesh was generated using a uniform spiral witim gite#, giving 4270
pressure nodes, 17,074 velocity nodes, 8536 pressure elements, and 34,144 velocity elements.

in which the domain is the surface of a sphere. Here we have presented a scheme fc
generation of unstructured triangular meshes suitable for use in finite-element based ¢
putations on the surface of a sphere. The scheme produces meshes that have a num
advantages, as listed below.

1. Grids of excellent quality are produced, as judged by the presence of near-equilal
triangles and uniform element sizes (for uniform grids). The quality of the grids has be
confirmed by numerical tests in which the shallow water equations were solved on sphel
domains [12]. The results showed that no unphysical reflections or grid related inaccura
were present.

2. Itis easy to produce locally refined grids, such as those required for regional weal
forecasting. Producing local refinement in a window that does not coincide with a com
tational pole requires only a simple solid body rotation of the spiral axis. This rotation dc
not affect the governing equations or calculations near the computational poles. Thisis a
tinct advantage over locally resolved structured grids, where the computational poles an
governing equations must be transformed so that the computational equator passes thi
the centre of the high resolution window [13]. Such a transformation has the disadvant
of making the Coriolis term dependent on both computational longitude and latitude.

3. Because grid points are not necessary at the poles, polar singularities can be avc
by slightly offsetting the spiral axis from the polar axis.

4. Although grids generated with this scheme are unstructured, they have an unde
ing spiral structure that can be exploited. For example, these grids were used in a s
Lagrangian-based algorithm for solving the shallow water equations on the sphere [
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Semi-Lagrangian algorithms require repeated solution of the element searching prok
in which the element containing a point known only by its physical coordinates must
found. For a fully unstructured mesh, this portion of the algorithm can be very computat
nally intensive. However, the underlying spiral allows an efficient searching procedure
be constructed.

5. Because geodesics are used to form edges, each element is a spherical triangle.
the domain is spherical, this implies that the continuous and discrete computational dom
are identical, and the computational representation of the domain is exact no matter
coarse the grid is.

In addition to using a spherical spiral to generate an unstructured grid on the sph
we have presented a technique that uses a second spherical spiral to efficiently de
pose a grid into subdomains for parallel computation. The proposed decomposition sch
works well, as judged by the division of nodes and elements into compact subdomz
of approximately equal size. Although there was a trend towards modest load imbala
as the number of subdomains increased, this was not judged to be severe. The proy
partitioning scheme also has the advantages that it can be done in parallel, is simple anc
nomical to implement, and imposes no restrictions on the number of subdomains that ca
generated.

Although we have not done so, there are a number of possible extensions to this ¢
generation scheme. For example, the unstructured grids could form the basis of a s
structured grid for three-dimensional spherical domains. One way of doing this would
to create prism-shaped finite elements by extending the radial vectors joining the node
the two-dimensional grid with the centre of the sphere. A second extension would be to
unstructured grids as generated above as a starting point for adaptive grid refinement.
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