
Journal of Computational Physics149,114–127 (1999)

Article ID jcph.1998.6146, available online at http://www.idealibrary.com on

A Scheme for Generating Unstructured
Grids on Spheres with Application

to Parallel Computation

Giri Chukkapalli,∗,1 Steve R. Karpik,† and C. Ross Ethier∗,2
∗Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada

and†Ontario Science Centre, Toronto, Ontario, Canada
E-mail: ethier@mie.utoronto.ca

Received June 16, 1998; revised October 22, 1998

Numerical solution of differential equations on the surface of the sphere re-
quires grid generation. Examples include numerical simulations of mantle convec-
tion, weather, and climate. Because of their ability to offer local resolution at modest
computational cost, unstructured grids are attractive in this context. However, un-
structured grids suffer from drawbacks such as high computational overhead and
inefficient generation schemes. Here we present a scheme for generating unstruc-
tured grids on the surface of the sphere that overcomes these limitations. We also
show how the scheme can be easily used to allow efficient domain decomposition for
parallel computations. The surface of the sphere is covered with a spherical spiral,
which is used to provide an underlying structure for the grid. The spiral is populated
by nodes, which are then connected using an advancing front technique to gener-
ate near-equilateral spherical triangular elements. Methods for producing local grid
refinement by adjusting the pitch of the spherical spiral are discussed, as is the ex-
tension of the method to the case of coupled pressure–velocity solvers. The same
general idea of a spherical spiral also serves as the starting point for an algorithm to
subdivide the grid into subdomains for parallel computation. The resulting unstruc-
tured grids are generally of very high quality: in uniform grids, 99.4% of the elements
have areas between 90 and 107% of the mean element area, and 99.8% of the edges
have lengths between 84 and 132% of the mean edge length. The quality of the grids
increases with mesh density. Partitioning of the nodes and elements produces well-
balanced and compact subdomains, with a maximum load imbalance that is small
and rises gradually with number of subdomains. The proposed scheme produces
grids that combine the benefits of an unstructured mesh with the structure conferred
by the underlying spherical spiral. For example, this underlying structure greatly
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facilitates tasks such as element searching. This scheme is an attractive alternative
for generating unstructured triangular grids on the sphere.c© 1999 Academic Press

Key Words:grid generation; finite element mesh; parallel computation; sphere;
numerical weather algorithm; domain decomposition.

INTRODUCTION

Numerical simulations of weather and climate require grid generation on the surface of
the sphere. Although the computational effort spent in grid generation is relatively small,
the grid influences every aspect of the subsequent computation, and the grid generation
step is therefore very important. An extensive analysis of the relative merits and demerits
of different grid generation schemes on the sphere can be found in Willliamson [1]. Here
we briefly review the two main types of grids currently used for solving partial differential
equations (PDEs) on a sphere, namely longitude–latitude grids and quasi-uniform grids.

Longitude–latitude grids are structured grids, with grid lines aligning with the spherical
coordinates. These grids have the advantages of being fairly simple to generate and of being
amenable to use with spectral or finite difference schemes for solution of the governing
PDEs. They suffer from severe crowding of grid points near the poles. This implies excess
computational expense without any gain of accuracy and in certain schemes can lead to time
step limitations and/or the need for filtering schemes to eliminate high frequency waves near
poles. Grid crowding can be avoided by using reduced grids at extreme latitudes, but this
results in hanging nodes and pseudo-reflections at regions of abrupt grid density change.
Kelly and Williams [2] found that forecast accuracy improves markedly by use of smoothly
varying grids.

Quasi-uniform grids are unstructured grids obtained by subdividing uniform tesselations
of the sphere. Because a sphere can be divided into at most 20 identical elements, higher
resolution grids based on such subdivisions must be quasi-uniform. The most popular way
to generate quasi-uniform grids is to project the vertices of an icosahedron inscribing the
sphere and to then bisect the edges of the resulting triangles. Quasi-uniform grids are
convenient to use with finite element based solution schemes for the governing PDEs (e.g.,
Cullen and Hall [3]), but they can also be used for finite difference discretizations (e.g.,
Williamson [4]). Quasi-uniform grids avoid poleward crowding and related problems, and
are attractive due to renewed interest in finite element spatial discretization schemes that can
handle such grids efficiently (e.g., Heikes and Randall [5, 6]). However, quasi-uniform grids
have disadvantages, including complex data structures, inability to generate the required
resolution, and inflexibility in generating variable resolution grids.

The purpose of this manuscript is to describe a new scheme for generating variable-
resolution, unstructured, triangular grids on the sphere that overcome many of the above-
mentioned problems. The basic concept involves using a spherical spiral to produce grids
that have a simple underlying structure, even though the grids are “unstructured” in the
finite-element sense. This simple underlying structure can be exploited in several ways to
produce good quality grids that are well suited to both serial and parallel computations.

METHODS

Our scheme for generation of unstructured grids is based on the use of a spherical spiral,
i.e. a spiral which lies on the surface of a sphere [7]. Spherical spirals can be characterized
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by the orientation of their axis and by their pitch, defined as the number of revolutions they
make on the sphere,n. Spherical spirals aligned with the north–south axis are described by

φ = f (θ), −π/2≤ φ ≤ π/2, 0≤ θ ≤ 2nπ, (1)

where f is any continuous, positive, monotonic function, andθ andφ are the longitude and
latitude coordinates, respectively.

Node Placement

The first step in the process is to generate a nodal distribution along a spherical spiral.
The nodes are placed on the spiral starting at one end and moving toward the other end.
The distance between consecutive nodes,e, is chosen so that triangular elements formed by
joining nodes from consecutive revolutions of the spiral will be approximately equilateral.
Denoting the latitudinal distance between two subsequent turns of the spiral byh(θ , φ) and
assuming a small triangular element, we therefore require

e(θ, φ) = 2h(θ, φ)/
√

3. (2)

The quantitye is computed by noting that the distanceds between two points on the unit
sphere separated bydθ anddφ is given by

ds=
√

cos2 φ +
(

dφ

dθ

)2

dθ (3)

so that the distances12 between two pointsP1(θ1) andP2(θ2) lying on the spiral is

s12 =
θ2∫

θ1

√
cos2 f (θ)+ f ′2 dθ. (4)

Thus, given a functionf (θ) with an associated inter-turn spacing distributionh(θ, φ), and
a point located at(θ1, f (θ1)), the angular locationθ2 of the subsequent point is given
implicitly by

h(θ1, f (θ1)) =
√

3

2

θ2∫
θ1

√
cos2 f (θ)+ f ′2 dθ (5)

which can be evaluated by numerical methods.

Uniform Spiral

A special case arises if the functionf is linear, in which case the spiral is said to be uni-
form and has the governing equation

φ = 1
2(θ/n− π). (6)

Such a spiral has uniform pitch, and on the unit sphereh(θ, φ) is therefore constant and
equal toπ/n. Equation (4) takes the simplified form

s12 =
√

1+ 4n2[E(φ2,m)− E(φ1,m)], (7)
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whereE is the incomplete elliptic integral of the second kind with parameterm= 4n2/

(4n2+ 1) andφi is φ evaluated atθi , i = 1, 2. FornÀ 1, which is usually the situation in
practice and forφi away from the poles, Eq. (7) simplifies to

s12 = 2n[sin(φ2)− sin(φ1)] (8)

which can be combined with Eq. (2) to give a closed-form expression for the locationθ2

for a givenθ1. Also, for nÀ 1, the total number of nodal points on the spiral,N, is given
by the approximate relation

N = 2
√

3

π
n2. (9)

Using this relation, the pitch of a uniform spiral can be chosena priori so as to give a desired
number of nodal points.

Nonuniform Spiral

A high-quality variable resolution mesh can be generated from a nonuniform spiral as
follows. A function f (θ) is specified that creates a tighter spiral near one of the poles,
which implies high node density near that pole. For example, by increasing the pitch along
the spiral axis, a higher nodal density is achieved toward the second spiral pole. Typically,
a constant, high pitch value is used within a high density “window” centred on the second
spiral pole, and the pitch value is gradually reduced outside this window to a lower value.
This results in a smoothly graded grid with local refinement around the second spiral pole.
In order to generate a higher nodal density in an arbitrary latitude–longitude window, the
spiral axis is rotated such that one of the spiral poles resides at the centre of the window.

Triangular Element Generation

The next step of the procedure is to create a triangular unstructured finite element mesh
using the nodal points generated above. Rather than using Delaunay triangulation for this
purpose, we employ a moving front technique that exploits the underlying linear structure
of the nodal points lying on the spherical spiral. Triangulation is started from one pole of
the spiral by joining nodes 1 and 2 with a geodesic to form the edge 1–2. This “active” edge
is then used to seed the following algorithm (Fig. 1):

Given an active edge with endpointsP1 andP2:

• Form a test spherical triangle from pointsP1, P2, andP1+ 1.
• Form a second test spherical triangle from pointsP1, P2, andP2+ 1.
• Choose the test triangle that is closest to equilateral, and reject the other one. If the

first test triangle is chosen, the new active edge becomesP2–P1 + 1; otherwise, the active
edge becomesP1–P2+ 1.

Repeat until the second pole of the spiral is reached.

Vector-Scalar Placement on the Grid

An important special situation arises when the PDEs to be solved on the sphere are de-
rived from the incompressible Navier-Stokes equations, e.g. the shallow water equations.
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FIG. 1. Partially constructed triangular mesh showing the node placement procedure and the triangulation
procedure. Triangulation procedure (upper portion of diagram); suppose that noden has been placed and node
n+ 1 is about to be placed. The placement of noden+ 1 is governed by the distancee, which is computed from
Eqs. (2)–(5) for the triangle defined by nodesn, n+ 1, andp. Triangulation procedure (centre of diagram): in this
schematic, nodes 1 to 10 lie on the spiral, with node 1 coinciding with the spiral pole. As shown, the active edge is
2–8, and the two test triangles are 283 and 289. Triangle 289 will be accepted because it is closest to equilateral,
and the active edge will advance to 2–9.

For numerical reasons, the pressure unknowns and the velocity component unknowns must
usually be defined on different grids in such situations (e.g., Arakawa and Lamb [8]). In the
finite element context, this requirement is known formally as the Brezzi–Bubuska (BB) con-
dition [9]. Choosing the velocity basis functions to be polynomials of one order higher than
the pressure, basis functions typically satisfies the BB condition, e.g. a linear approximation
space for pressure, coupled with a quadratic approximation space for velocity. However,
the calculation of inner products of the fields and their derivatives becomes cumbersome
when higher order basis functions are employed on spherical grids.

An attractive way of avoiding this problem is to use the so-called pseudoP2–P1 ele-
ment, first introduced by Bercovier and Pironneau [9]. Such elements, which satisfy the
BB condition, approximate both the velocity and pressure fields using linear basis func-
tions. However, the velocity basis functions are defined on elements formed by joining
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the midpoints of the sides of the pressure elements with geodesics. Thus, every pressure
element contains four velocity elements. When the pseudoP2–P1 element is used, the
pressure grid is a subset of the velocity grid; thus additional positional coordinates need
not be stored or calculated at every time step. Another important advantage of such ele-
ments, in the case of semi-Lagrangian treatment of the advection terms, is that expensive
departure point calculations need not be performed for pressure and velocity grid points
separately.

If pseudoP2–P1 elements are used for spatial discretization, the fill pattern of the matrices
arising from a spatial discretization of a governing equation on the surface of the sphere
will depend on the node numbering system used. One approach is to number pressure
nodes “naturally,” i.e. in the order in which they appear on the spiral. Velocity nodes can be
numbered in a similar fashion, with the added complexity that the node number for eachP1

element midside node is “inserted” into the numbering list following the first corner node
attached to that midside node. This scheme results in banded matrices with a bandwidth
approximately equal to the number of nodes required to complete one wrap of the spiral.

Parallel Computation Issues

For many large-scale numerical problems, it is desirable to carry out the computations
in parallel. A number of partitioning schemes for unstructured grids have been proposed in
the literature [10, 11], but many of them suffer from drawbacks of one type or another. For
example, most popular partitioning schemes for unstructured grids are based on recursive
bisection algorithms. These are restricted to partitioning the domain such that the number of
subdomains is a power of two, and thus they are not sufficiently flexible in some situations.
Furthermore, some partitioning algorithms (e.g., spectral bisection) are relatively expensive.
Finally, existing algorithms balance loads well between processors, but do not necessarily
minimize interprocessor communication. Here we show how our grid generation scheme
is consistent with an efficient partitioning of the computational space that overcomes these
problems. This partitioning scheme is based on a data decomposition paradigm. For simplic-
ity, we assume that the amount of data per node and per element is approximately uniform
across the computational domain, so that data partitioning is equivalent to partitioning the
total number of nodes and elements in the physical domain. A suitable partitioning scheme
should have the following attributes:

1. It should be simple and economical to implement.
2. It should be flexible in generating the required number of partitions, including cases

where the number of partitions is large.
3. It should produce a balanced load across all the processors. Withouta priori knowledge

of the computational load per node, we simply assume that balancing the number of grid
points across all processors will produce a balanced load. Failure to produce balanced
loads will give nonoptimal speedup on parallel architectures, particularly on machines with
relatively weak processors.

4. It should minimize the inter-subdomain communications. In many applications, this
implies that the subdomains should be compact, and we have taken this as a requirement
for our partitioning scheme.

A suitable algorithm that uses the underlying spiral structure of our nonuniform grids to
partition the spherical surface grid intoP subdomains is as follows:
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• Generate a spherical spiral (of suitable pitch) that containsP nodes distributed ap-
proximately uniformly on the surface of the sphere. These nodes will lie approximately at
the centre of each subdomain and will be referred to as “processor nodes.”
• For each processor node, identify and store the closest node from the numerical grid.

These closest grid points will be referred to as “seed nodes” and will be used to start the
following form of the greedy algorithm for accumulation of neighbouring grid points.
• For each seed node, use node-neighbour information from the connectivity table

to attach all available immediate neighbour nodes to the corresponding subdomain. This
creates a “shell” around each seed node.
• Repeat this process using each newly acquired node within the shell to form a second

shell surrounding the seed node.
• Continue forming shells in this manner untilN/P nodes are attached to the sub-

domain, or until no more available immediate neighbour nodes remain.
• Carry out a sweep over the entire domain to assign any remaining nodes to the adjacent

subdomain with the smallest number of nodes. This is necessary for two reasons. First, the
distribution of the seed nodes on the surface of the sphere can never be perfectly uniform,
resulting in unacquired nodes around some subdomains. Second, some subdomains reach
their limit of N/P nodes before acquiring all their neighbours. The second reason appears
to be the main source of unevenness in the partitions generated using this scheme.
• Partition elements into subdomains according to which subdomain owns the majority

of their nodes. Elements with three nodes belong to three different subdomains are allotted
to the subdomain that has the lowest number of elements.

For cases in which the computational domain contains both a velocity and a pressure
grid, the partitioning is done on the pressure grid, and the velocity grid is then partitioned.
For isoP2–P1 elements, this is a well-defined process since the velocity grids are contained
inside the pressure grids.

RESULTS

Grids Based on Uniform Spirals

A uniform spiral with pitchn= 10 is shown in Fig. 2, and the resulting pressure and
velocity grids are shown in Fig. 3. It can be seen from Fig. 3 that the vast majority of the
spherical triangular elements are well-formed (i.e., approximately equilateral). Near the
second pole of the spiral grid, where meshing comes to completion, some of the elements
are slightly deformed because the last node on the spiral does not usually coincide with the
second spiral pole (see centre of Figs. 3b and 3d). However, these elements are not grossly
deformed, and our experience is that in practice such meshes work well without the need for
mesh smoothing near the second pole. Further, the deformation that occurs near the second
pole diminishes as the pitch of the spiral (and thus the node density) increases.

Quantitative measures of unstructured grid quality include the distribution of elemental
areas, edge lengths, and aspect ratios. Here we define the aspect ratio to be the length of
the longest side divided by the altitude from this longest side. The “optimal” aspect ratio is
approximately 1.1547 for small spherical triangles, which is a lower bound for the actual
aspect ratios. Figure 4 shows the distribution of the above three quantities for a grid based on
a uniform spiral with pitchn= 32. Overall, the distributions show that the resulting mesh is
of good quality: 99.4% of the elements had areas between 90 and 107% of the mean element
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FIG. 2. A uniform spherical spiral with pitchn= 10. The solid line shows the spiral axis, which was inclined
in the z-y plane by 10◦ to the polar axis. Superimposed on the spiral are nodes (black circles) generated by the
procedure described in the text. This spiral was used to generate the meshes shown in Fig. 3.

area; 99.8% of the edges had lengths between 84 and 132% of the mean edge length; and
99.9% of the elements had aspect ratios less than 2.1. There were 12 elements (out of 8728)
that had aspect ratios greater than 2.1. These elements were derived from subdivision of
three pressure elements near the poles, and had a maximum aspect ratio of 2.54. Overall,
these mesh statistics are very favourable and confirm the excellent quality of the grid.

Grids Based on Nonuniform Spirals

We present one nonuniform grid to illustrate the potential of the method. Figure 5 shows
a grid with a refined zone within a circular window of arc 50◦ centred at (53◦N, 103◦W).
Inside this window, the underlying spherical spiral was specified to be uniform with pitch
n= 22. Outside this window, the effective local pitch was gradually reduced by a fixed
increment of approximately−0.0015 each time a grid point was added, resulting in a final
pitch at the second spiral pole ofn= 10. This gradual reduction in pitch produces a mesh
with smoothly varying element sizes, so that pseudo-reflections are avoided and solution
accuracy is maintained [3].

Grid Partitioning for Parallel Computations

We illustrate the performance of the grid partitioning procedure by showing statistics
for several partitioned grids. Figure 6 shows a polar view of a grid with inter-subdomain
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FIG. 3. Unstructured pressure and velocity grids based on a uniform spherical spiral with pitchn= 10 and
the pseudoP2–P1 triangular element: panel (a) equatorial orthographic view of pressure grid; panel (b) polar
orthographic view of pressure grid; panel (c) equatorial orthographic view of corresponding velocity grid;
panel (d) polar orthographic view of corresponding velocity grid.

FIG. 4. Distribution of elemental areas, edge lengths, and elemental aspect ratios for the velocity mesh
generated with an underlying uniform spiral of pitchn= 32. This mesh contains 8728 velocity elements (6546
edges). The bin size was 1% for the left panels and 0.02 for the right panel.
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FIG. 5. Spiral geodesic grid with a local high resolution window over North America for regional forecast
purposes. This grid contains 207 pressure nodes, 410 pressure elements, 822 velocity nodes, and 1640 velocity
elements. See text for detailed discussion of how grid was generated.

boundaries outlined. It can be seen that the proposed algorithm generates reasonably com-
pact subdomains, resulting in small inter-subdomain boundary lengths. Figure 7 quantifies
the distribution of nodes and elements within each subdomain of a uniform mesh divided
into 20 subdomains. Although the load is not precisely balanced between subdomains by
this partitioning algorithm, it can be seen that a near-equal subdivision is obtained.

In order to further quantify how well the partitioning scheme distributes nodes and ele-
ments into subdomains, we define a load imbalance parameter,Lu, by

Lu= 100(Nmax− NI )/NI (10)

whereNtotal is the total number of nodes or elements,NI = Ntotal/P is the ideal distribution of
nodes or elements per subdomain, andNmax is the maximum number of nodes or elements
actually allotted to any subdomain. Figure 8 shows how this parameter varies with the
number of subdomains. The load imbalance increases with the number of subdomains, as
expected. However, even for up to 38 processors the maximum imbalance is only 6%, which
is acceptably small.

DISCUSSION AND CONCLUSIONS

Generation of appropriate grids on spheres is a nontrivial problem. Such grids are required
in meteorological dynamics simulations, as well as in other nonmeteorological computations
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FIG. 6. Partitioning of a spherical spiral grid of pitch 32 into 8 subdomains. Heavy lines indicate subdomain
boundaries.

FIG. 7. Typical distribution of nodes and elements resulting from the mesh partitioning strategy described in
the text. The original mesh was generated using a uniform spiral with pitchn= 64, and was subdivided into 20
subdomains.
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FIG. 8. The load imbalance parameter,Lu, vs the number of subdomains. See text for definition of load
imbalance parameter. The original mesh was generated using a uniform spiral with pitchn= 64, giving 4270
pressure nodes, 17,074 velocity nodes, 8536 pressure elements, and 34,144 velocity elements.

in which the domain is the surface of a sphere. Here we have presented a scheme for the
generation of unstructured triangular meshes suitable for use in finite-element based com-
putations on the surface of a sphere. The scheme produces meshes that have a number of
advantages, as listed below.

1. Grids of excellent quality are produced, as judged by the presence of near-equilateral
triangles and uniform element sizes (for uniform grids). The quality of the grids has been
confirmed by numerical tests in which the shallow water equations were solved on spherical
domains [12]. The results showed that no unphysical reflections or grid related inaccuracies
were present.

2. It is easy to produce locally refined grids, such as those required for regional weather
forecasting. Producing local refinement in a window that does not coincide with a compu-
tational pole requires only a simple solid body rotation of the spiral axis. This rotation does
not affect the governing equations or calculations near the computational poles. This is a dis-
tinct advantage over locally resolved structured grids, where the computational poles and the
governing equations must be transformed so that the computational equator passes through
the centre of the high resolution window [13]. Such a transformation has the disadvantage
of making the Coriolis term dependent on both computational longitude and latitude.

3. Because grid points are not necessary at the poles, polar singularities can be avoided
by slightly offsetting the spiral axis from the polar axis.

4. Although grids generated with this scheme are unstructured, they have an underly-
ing spiral structure that can be exploited. For example, these grids were used in a semi-
Lagrangian-based algorithm for solving the shallow water equations on the sphere [12].
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Semi-Lagrangian algorithms require repeated solution of the element searching problem
in which the element containing a point known only by its physical coordinates must be
found. For a fully unstructured mesh, this portion of the algorithm can be very computatio-
nally intensive. However, the underlying spiral allows an efficient searching procedure to
be constructed.

5. Because geodesics are used to form edges, each element is a spherical triangle. Since
the domain is spherical, this implies that the continuous and discrete computational domains
are identical, and the computational representation of the domain is exact no matter how
coarse the grid is.

In addition to using a spherical spiral to generate an unstructured grid on the sphere,
we have presented a technique that uses a second spherical spiral to efficiently decom-
pose a grid into subdomains for parallel computation. The proposed decomposition scheme
works well, as judged by the division of nodes and elements into compact subdomains
of approximately equal size. Although there was a trend towards modest load imbalance
as the number of subdomains increased, this was not judged to be severe. The proposed
partitioning scheme also has the advantages that it can be done in parallel, is simple and eco-
nomical to implement, and imposes no restrictions on the number of subdomains that can be
generated.

Although we have not done so, there are a number of possible extensions to this grid-
generation scheme. For example, the unstructured grids could form the basis of a semi-
structured grid for three-dimensional spherical domains. One way of doing this would be
to create prism-shaped finite elements by extending the radial vectors joining the nodes of
the two-dimensional grid with the centre of the sphere. A second extension would be to use
unstructured grids as generated above as a starting point for adaptive grid refinement.
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